
UDC 551.501.45:551.577.2:551.509.617 

Three-Parameter Kappa Distribution Maximum 
likelihood Estimates and Likelihood Ratio Tests 
PAUL W. MIELKE, JR.-Department of Statistics, Colorado State University, Fort Collins, Colo. 
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ABSTRACT-Methods are presented for obtaining maxi- 
mum likelihood estimates and tests of hypotheses involving 
the three-parameter kappa distribution. The obtained 
methods are then applied by fitting this distribution to 
realized sets of precipitation and streamflow data  and 
testing for seeding effect differences between realized seeded 
and nonseeded sets of precipitation data. The kappa 
distribution appears to fit precipitation data as well as 
either the gamma or log-normal distribution. As a conse- 
quence, the sensitivity of test procedures based on the 
kappa distribution compares favorably with that of 

1. INTRODUCTION 

The gamma and log-normal families of distributions 
(or simply gamma and log-normal distributions) are 
commonly used to fit precipitation data in meteorological 
applications. Each of these distributions is characterized 
by two parameters termed the “shape” and “scale” 
parameters. In  weather modification applications, at- 
tention is focused on detecting scale changes in precipita- 
tion amounts induced by cloud seeding (Thom 1957, 
Neyman and Scott 1965, Simpson 1972). 

Recently another family of probability distribution 
functions was introduced that is relatively easy to work 
with, possesses a simple closed form for both its density 
and cumulative distribution functions, and appears to be 
appropriate in applications involving precipitation data 
(Mielke 1973). This family has been termed the “three- 
parameter kappa family of distributions” [or simply the 
“kappa( 3) distribution’ ’1. The kappa( 3) distribution’s 
density function and cumulative distribution function 
are given by 

l o 1  if x_<O 
and 

previously used test procedures. 
Since both the density and cumulative distribution 

functions of the kappa distribution are in closed form, the 
density and cumulative distribution functions associated 
with each order statistic are also in closed form. In  con- 
trast, the gamma and log-normal cumulative distribution 
functions are not in closed form. As a consequence, compu- 
tations involving order statistics are far more convenient 
with the kappa distribution than either the gamma or 
log-normal distributions. 

parameters a, 0, and 0. Parameter 0 is a scale parameter, 
whereas parameters a and e are shape parameters. It 
appears appropriate a t  times to set e= i .  I n  this latter 
case, parameter cy is the only shape parameter and the 
resulting family of distributions is termed the “two- 
parameter kappa family of distributions” [or simply 
the “kappa(2) distribution”]. 

Procedures to obtain maximum likelihood estimates 
of the kappa(3) distribution parameters and to perform 
associated likelihood ratio tests are presented. Also 
included are numerical examples bmed on precipitation 
data collected during a cloud seeding experiment con- 
ducted in Florida (Simpson 1972). I n  addition, specific 
numerical comparisons using the maximized likelihood 
function as a goodness-of-fit criterion are made between 
the gamma, log-normal, and kappa distributions. These 
latter comparisons are based on precipitation and stream- 
flow data. The precipitation data are associated with 
weather modification experiments conducted in Colorado 
and Florida (Mielke et al. 1971, Simpson et al. 1971). 
The streamflow data illustrate a case in which the kappa(3) 
distribution reasonably describes a set of data while the 
kappa(2) distribution is inadequate. 

if 250 

respectively, where a>O, p>O, and e>O. Thus, the 
kappa(3) distribution is characterized by the three 

where 

2. MOMENTS AND ORDER STATISTICS 

If X is a kappa(3)-distributed random variable, then 
the rth moment of X about zero is 
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I n  particular, exists whenever -e<r<ae. 
The closed form of the kappa distribution’s cumulative 

distribution function permits ready computation of 
distributions based on order statistics. For example, let 
X(lC) denote the kth largest order statistic from below in 
a sample of size n (k= 1, . . . ,n). Then the density function 
and cumulative distribution of X ( Q  are given by 

and 
.fn(Z)=k(;)[F(z>l”-’Il --F(Z)l”-Yb) 

F&>= 2 (;)[F(z)l’[l--F(s)l”-1, 
j=k 

respectively, where the , f ( x )  and F(z)  associated with the 
kappa(3) distribution are stated explicitly in section 1. 
Similar computations involving order statistics of either 
the gamma or log-normal distributions are extremely 
cumbersome. 

3. MAXIMUM LIKELIHOOD ESTIMATORS 

Consider a random sample of n observations (zl, . . ., 
z,) from the kappa (3) distribution. The likelihood 
function associated with this sample is given by 

Computational facility is improved by working with the 
natural logarithm of the likelihood function given by 

Q=ln [L(a, 8, e)J=n In (a)+% In (e)-M In ( p )  

The maximum likelihood estimators of a, 8, and 0 are 
those values, say 6, p ,  and e*, which maximize Q (Rao 
1965). The Newton-Raphson method for simultaneous 
equations (Scarborough 1955) is used to iteratively obtain 
these values. The basis for this method involves truncating 
all second and higher order terms in the Taylor series 
expansions of the first-order partial derivatives of Q and 
setting these truncated expansions equal to zero. The 

I 

, details are given in appendix 1. 

I For the numerical examples considered, this method 
converged rapidly and required very little computer 
time [less than 10s of central processer (CP) time on a 
Control Data Corporation (CDC) 64001.’ Appropriate 

I 

, initial values were attained by setting 0 = 1 and obtaining 
the kappa (2) distribution maximum likelihood estimators I 
of a and p (Mielke 1973). The termination criterion for 
this and subsequent iteration processes is that the absolute 
difference between the ith and ith + 1 iterative solutions 
of each parameter is less than 0.0001. I 

I 
4. EVALUATION PROCEDURES 

Initially described is a likelihood ratio test based on 
the kappa (3) distribution for evaluating possible effects 
of cloud sceding on precipitation amounts. This test is 

1 Mention of a commercial product does not constitute an endorsement. 

suitable for experiments based on a random experimental 
design (Schickedanz and Huff 1971) such as certain 
Colorado and Florida experiments (Mielke et al. 1971, 
Simpson e t  al. 1971). 

Let zl, . . . ,z, and yl, . . . ,y, denote independent 
random samples of observed precipitation amounts 
during m nonseeded and n seeded experimental units 
(e.g., days or clouds), respectively. The likelihood func- 
tion is given by 

L ( ~ ’ ,  p’, p”, e’, e y = r ( a ) ,  p’, e’)ziyaii, p”, e”) 

where 

and 

The natural logarithm of this likelihood function is given 
by 

Q= Q’ + Q” 
where 

Q=ln [L(a’, a”, p’, b”,  e’, e”)], 
&’=In [L‘((Y’, p’, e’)], 

and 
&”=In [L”(a”, p”, e”)]. 

To investigate a possible scale change induced by seed- 
ing, we tested the null parameter space (null hypothesis) 
given by 

wl= {a’=att=a, p’=p”=p, e’=e”=e} 

against the alternative parameter space (alternative hy- 
pothesis) given by 

Q , = { ~ ’ = ~ ’ ’ = ~ ,  p’, @“, e’=#‘=@}. 

If the parameter space is in fact wl, then the approximate 
large sample distribution of the likelihood ratio te .t 
statistic given by 

A A 
is chi-square with 1 degree of freedom. Here, Ql ard  
designate the maximum likelihood estimates of the param- 
eters comprising Q1 and wl, respectively (Wilks 1962). 
In particular, the w1 estimates are obtained from the tech- 
niques indicated in section 3 by simply assuming that the 
m t n  observed precipitation amounts in the pooled sample 
%re from the same kappa (3) distribution. However, the 
Q, estimates require an additional application of the 
Newton-Raphson method, which is presented in appendix 
2. This procedure also converged rapidly for the numerical 
examples that were considered (less than 15 s CP time on 
a CDC 6400). 

A 

702 / Vol. 101, No. 9 / Monthly Weather Review 



If the assumption involving common shape parameters 
is questioned, the null parameter space given by 

uz= {a'=a"=a, O f ,  p", = e }  

can be tested against the alternative parameter space 
given by 

Q ~ = { ~ ' ,  o f ,  p", e', et' 1. 

The appropriate large sample distribution of the likelihood 
ratio test statistic given by 

when the actual parameter space is w2, is chi-square with 
2 degrees of freedom. In  this instance, the & estimates are 
the same as the previously described Q1 estimates. Also the 
Q2 estimates are obtained from the techniques given in 
section 3 by obtaining separately the maximum likelihood 
estimates of the two sets of parameters, { a', P' ,  8' 1 and 
{a", P", 8" }, associated with the m nonseeded and n 
seeded experimental units, respectively. 

One might consider, incidentally, whether the use of 
the kappa(3) distribution [rather than the kappa(2) 
distribution] results in the improved fit of certain data. 
For this purpose, the null parameter space given by 

A 

A 

w3= (a, p, e = i  1 

%=bl P, 0 ) .  

is tested against the alternative parameter space given by 

If the actual parameter space is w 3 ,  then the approximate 
large sample distribution of the likelihood ratio test 
statistic given by 

is chi-square with 1 degree of freedom. For this situation, 
the C, estimates are obtained by usingApreviously described 
techniques (Mielke 1973), and the fit3 estimates are de- 
termined with techniques given in appendix l .  If the 
kappa@) distribution happens to be appropriate, then 
simple two-sample rank tests based on powers of ranks 
have optimum properties in their ability to detect scale 
differences (Mielke 1972, 1973). 

5. NUMERICAL EXAMPLES AND COMPARISONS 

Application of Evaluation Procedures 
To illustrate the evaluation procedures introduced in 

section 4, we shall consider 52 raw rainfall amounts as- 
sociated with 26 nonseeded and 26 seeded experimental 
units of randomized pyrotechnic seeding experiments 
(Simpson 1972). These experiments were conducted in 
southern Florida during 1968 and 1970. Among the 26 
nonseeded rainfall amounts; a single zero value was re- 
placed by the value 1. The remaining 5 1  nonseeded and 

TABLE 1.-Likelihood ratio test statistic valucs and selected intermediate 
results 

A A A 
ill: :=1.384 0' =64.324 6 =0.916 

"1, - 0 -216.511 

&($)=-335.1383 
A h  A A 
W I :  a=1.463 p =i25.935 e =o.gig 

A 
&(wI)= -338.8461 

Ti=7.4156 
A A A 
&: 2'=1.013 /3'=54.934 6'=1.085 

3' = 0.809 $'I = 252.6% 4 1 -  a -1.871 
&($J = - 334.8745 

A A A 
WZ: 2=1.384 8'=64.324 6 =0.916 

A 
p" = 216.51 1 

A 
&(wz) = -335.1383 

Tz =0.5276 
A A 

Q3: a=1.013 p =54.934 8 =1.085 
A 

&(Q3)=-153.1878 
A 

~ 3 :  a=1.131 p =57.896 
Q($) = - 153.2019 
T3= 0.0282 

seeded rainfall amount values ranged from 4.1 to 2,745.6 
(units are in acre-feet). 

The likelihood ratio test statistics TI,  T2, and T3, to- 
gether with their associated maximum likelihood estimates 
and maximized likelihood function values, are presented 
in table 1. While TI and T2 employ the entire set of 52 
experimental units, T3 is based strictly on the 26 nonseeded 
experimental units. 

The approximate p value (probability of having a more 
extreme test statistic than the realized test statistic under 
the null hypothesis) associated with the realized value of 
TI is 0.006. In  addition, the maximum likelihood estimate 
of the ratio P f ' l P f  is 3.37 (ie., an estimated 237 percent 
increase in rainfall attributed to seeding). These last re- 
sults merely support previous findings (Simpson et al. 
1971). The approximate p value corresponding to the 
realized value of T2 is 0.77. This last result suggests that 
the assumption involving common shape parameters is 
not unreasonable. 

The approximate p value associated with the realized 
value of T3 is 0.87. Thus, for the present data, the kappa- 
(3) distribution offers no improvement of consequence 
over the kappa(2) distribution. For the present situation, 
the maximum likelihood estimate of the kappa(2) dis- 
tribution's shape parameter, $= 1.131, yields a nonpara- 
metric power of ranks test (where 1.131 is the power of 
ranks) that, for large sample sizes, is very efficient in 
being able to detect small-scale changes (Mielke 1972, 
1973). The approximate one-sided p value corresponding 
to this nonparametric test statistic's realized value is 
0.006. Incidentally, the corresponding approximate one- 
sided p value associated with the realized value of TI 
is 0.003. 
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TABLE 2.-Stream$ow amounts (1,000 acre-feet) at USGS gaging 
station number 9-5486 f o r  April 1-August 31 of each year 

TABLE 3.-comParisons Of kappa (d, kappa (31, gamma and 109- 
normal distributions for four sets of data  

Data set A 
1954 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  126.46 8 
1 9 5 5 _ _ _ - _ _ _ _ - - - - _ - - - -  128.58 
1956 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  155.62 
1957 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  400. 93 
1958 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  248.57 A A 

1959 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  91. 27 
1960 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  238.71 &(4= -181.8575 & G ( c u , ~ )  = - 182.3059 

Kappa (3): Log-normal : 1 9 6 1 _ _ - _ _ _ _ _ _ _ _ _ _ _ _ - -  140. 76 
1962 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  228. 28 
1 9 6 3 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ -  104.75 a=1.871 a= 1.569 
1 9 6 4 _ _ _ - _ _ _ _ _ - - - _ _ - - -  125. 29 A A 

1965 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  366. 22 
1 9 6 6 _ _ _ - _ _ _ _ - - _ _ _ _ - - _  192.01 e=o. 809 & ~ ( a , o )  = - 182.0836 
1967 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  149.74 
1968 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  224. 58 
1969 _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _  242. 19 
1 9 7 0 _ _ _ - - _ _ _ - - _ _ _ _ - _ -  151. 25 

Kappa (2): Gamma: 
A A 
a= 1.356 a=O. 640 

8= 216.398 p= 691.048 
A A h  

A A 

8= 252.628 @=169.726 
A A A  

A 
&(Or) = - 181.6867 

Data set B 

Kappa (2) : Gamma: 

Empirical Comparisons 
With Alternative Distributions 

A A 
a= 12.395 a = 7.105 
A A 
/3=5.302 8=0.546 

&(4= -51.9326 &G(Q,B)= -45.3861 
A A h  

The kappa(2) and kappa(3) distributions are compared Kappa (3) : Log-normal : 
with the gamma and log-normal distributions for four sets A A 
-L J - ~ -  n-,.- A -L L L -  _-___ - - : - ~ - I I  L _  Q= 1.871 a=0.392 VI ULLb211. ULLLA beb t+ tiUllblbbb UI  IJllt: l a w  1211IIllall alIluulllis 

associated with the 26 seeded experimental units of the 
previously mentioned Florida experiments. Data set B 
consists of the fourth root of the individual raw rainfall 
amounts associated with the same 26 seeded experimental 
units (Simpson 1972). Data set C consists of nonzero 
precipitation amounts associated with 30 specified experi- 
mental units of a wintertime orographic cloud seeding 
experiment conducted in the vicinity of Climax, Colo. 
(Mielke 1973). Data set D consists of April 1-August 31 
accumulated streamflow amounts (units in 1000 acre- 
feet) for 35 yr (1936-70) a t  the US.  Geological Survey 
(USGS) gaging station number 9-3425 (San Juan River 
a t  Pagosa Springs, Golo.). Data set D was extracted from 
'USGS surface water records and is given in table 2. 

'rhe maximized likelihood function is both cogent and 
appealing as a criterion for goodness-of-fit and serves as 
the goodness-of-fit measure for these comparisions. The 
maximum likelihood estimators and natural logarithms 
of the maximized likelihood functions associated with these 
comparisons are given in table 3. The density functions of 
the gamma (G) and log-normal (L)  distributions associ- 
ated with the natural logarithms of maximized likelihood 
functions listed in table 3 have the form 

A A 

A A A  
8=3.987 j3=3.609 

8=3.237 Qt(a,P) = -45.9233 
A 

Q(fi3)  = -45.5264 

Data Set C 

Kappa (2): 
A 

A 
a= 1.8644 
@= 0.0695 

A 
Q ( w ~ )  ~ 4 0 . 5 8 1 7  

Kappa (3) : 
A 
a= 1.0459 
A 
p=0.0548 
A 
e=i.4455 

A 
Q ( Q 3 )  =40.8103 

Gamma: 
A 

A 
a = 0.9687 

j3=0.0993 
A A  

&@(a,@) =40.2601 

Log-normal: 
A 

A 

A A  

Q = 1.1422 
j3=0.0529 

Q~(a,j3) =41.6364 

Data set D 

Kappa (2): Gamma: 
A A 

A A 
a= 10.7421 a=5.2178 

8=312.1797 8 = 41.9621 
A A A  

&(&I = -214.1449 Qa(a,j3)= -207.0155 

[ p r ( ~ ~ ) ] - ~ z a - l e - ~ / ~  , if O<x Kappa (3): Log-normal: 
j&)= { 0 if x < O  A A 

a=0.4448 a=0.0345 
@= 161.0220 j3= 198.3373 
A A h  
e=74.7458 Q L ( Q , ~ ) =  -206.4585 

and A A 

A 
Q ( Q 3 )  = -207.0034 

l o  if z50 

where a! and /3 represent shape and scale parameters, 
respectively. 

By the present criterion, the kappa(3) distribution is 
not inferior to either the gamma or log-normal distribu- 
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tions for data sets A, B, C, or D. However, for data set B 
involving the fourth root of the individual raw rainfall 
amounts, the kappa(2) distribution is unable to account 
for the transformation’s induced symmetrization of this 
data. Further, the kappa(2) does not provide an adequate 
fit of data set D. In particular, the p values associated with 
the realized values of T3 for data sets A, B, C, and D are 
0.56, 0.0003, 0.50, and 0.0001, respectively. 

6. CONCLUSIONS 

The kappa(3) distribution compares very favorably 
with the gamma and log-normal distributions in being 
able to describe natural precipitation data. I n  addition, 
the kappa(3) distribution’s cumulative distribution func- 
tion has a closed form. As a result, computations involving 
distributions based on the kappa(3) distribution’s order 
statistics are relatively convenient. Similar computations 
involving cumulative distribution functions not in closed 
form (e.g., the gamma and log-normal distributions) re- 
quire either extensive tables or numerical integration 
procedures. 

Numerical procedures for obtaining maximum likelihood 
estimates of the kappa(3) distribution’s parameters have 
been described. Related numerical procedures for deter- 
mining likelihood ratio test statistics based on the kappa(3) 
distribution have also been given. These likelihood ratio 
tests are suitable for evaluating realized data from weather 
modification experiments based on a random-experimental 
design. These numerical procedures required very little 
computing time (less than 15 sCP time on a CDC 6400 for 
examples presently considered). 

APPENDIX 1 

Iterative Procedures for Obtaining Kappa(3) 
Parameter likelihood Estimators 

Let 

and 

where 

Q=ln[L(a, 0, e)]=% In (a)+n In @)-ne In ( p )  

Explicit expressions for the first- and second-order partial 
derivatives of Q are 
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and 

After truncating all second-and higher order terms in 
the Taylor series expansions of the first-order partial 
derivatives of Q and setting these truncated expansions 
equal to zero, the resulting system of equations is given by 

Q i ( 4  + (ai+i-aJQii(i) + ( P i + i - P i ) Q i ~ ( i )  

+ (e,+, - e t )  Q13 (i) =oi 

QZ (4 + (ai+i- ai) Q I Z  (9 + @i+i -P i>  Q ~ z  (4 
+ ( e t + i - ~ i ) Q z 3 ( 4 = 0 1  

and 

This system of equations together with appropriate initial 
values, say ao, B o ,  and eo, provides an iterative process 
that *yields a sequence of solutions converging to 2, 0, 
and e. Specific solutions of the i t h + l  iterative solutions 
(ai+]) Bi+i, and B i + J ,  given the ith iterative solutions (ai, 
Pi ,  and e,), are given by 

and 

where 

APPENDIX 2 

Iterative Method for Obtaining ti Estimates 

For this case, 

Q=l“~(~ lP ’7P’ ’ l~ ) l l  
&’=ML’(a,P’,@ I, 

and 
Q’ ’ =In[ L’ ’ ( a,@’ ’,e) 1. 

Also, if the subscripts 1,  2’, 2”, and 3 designate the partial 
derivatives with respect to al p’, p“, and e, respectively, 
the required partial derivatives of Q, expressed in the 
same iterative notation used in section 3 and appendix 1,  
are stated as follows: 
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PICTURE OF THE MONTH 
Gravity Waves Following Severe Thunderstorms 
CARL 0. ERICKSON and LINWOOD F. WHITNEY. JR.-Meteorological Satellite Laboratory, 
National Environmental Satellite Service, NOAA, Hillcrest Heights, Md. 

Visible and infrared pictures (figs. 1,  2) from the Very over the Southern Great Plains. Picture times are identical 
High Resolution Radiometer (VHRR) aboard the and arc approximately 1010 CDT (1510 GAIT) on May 22, 
SOAA 2 satellite both show the eastern half of the United 1973. A partial grid has been superimposed on the infrared 
States after a night of severe thunderstorm activity view. 

FIGURE 1.-View o f  the  Eastern United States as seen through the visible channel of the  Very High Resolution Radiometer aboard the 
NOAA #2 satellite (0.6-0.7~111). Picture time i.; approxiniatcly 1.510 GMT, May 22, 1973. 
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Of particular interest is the wave-cloud formation at  A, 
which extends from east-central Arkansas to northeastern 
Texas. Figure 3 is an enlargement of the visible view of 
the area. This cloud formation at  A is believed to repre- 
sent southeastward-moving gravity waves initiated by 
the earlier violent convection to the north and northwest. 
During the night of May 21 and the early morning of 
May 22, numerous severe thunderstorms were reported 
from the five-state area of Texas, Arkansas, Oklahoma, 
Kansas, and Missouri, a few storms persisting until after 
sunrise. Tornadoes also occurred over Kansas, Missouri, 
Iowa, and Arkansas. Cloud debris associated with the 
earlier convection is indicated by B. 

During and following that thunderstorm activity, a 
number of surface observing stations in the area reported 

either the passage of a pressure jump or the occurrence 
of markedly unsteady surface pressure. Over northeas tern 
Texas and Arkansas, there were also a few reports in- 
dicating the existence of a traveling roll cloud and windshift 
line during the 2 4  hr preceding picture time. Figure 4 
gives the surface analysis for 1500 GMT-~O minutes prior 
to picture time. The analysis shows that a traveling 
surface disturbance continued to exist in the form of a 
pressure surge and meso-High. The trough line preceding 
the meso-High is nearly coincident with the satellite- 
viewed wave clouds. 

Most of the wave-cloud formation appears to be a t  
middle tropospheric levels. Both the relative brightness 
of the formation in the infrared picture of figure 2 and 
the conventional meteorological data in the area indicate 

f 

i 

FIGURE 2.-Same as figure 1, an infrared view through the water vapor window channel (10.5-12.5 pm). 
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FIQURE 3.--Enlarged view of figure 1 showing wave-cloud area. 

an altitude not far from 550 mb. However, the dark gray 
estcnsion of this wive pttttern in northeast. Texas (ap- 
psrcrit in thc originnl version of fig. 2 h i t .  possib1.v not in 
the printed reproductionj shows that the low-levcl 

stratocumulus is also affected. Thus, the waves appear to 
exist through ti dcep layer of the tropospherc. 

Sotith of the wave clouds, over East Texas, Louisiana, 
ond Sou thcrn Mississippi, Iritiny sniull low-level cumuli 
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FIGURE 4.-Surface analysis for 1500 GMT, May 22, 1973. 

are forming in the morning heating of the tropical air Note that the infrared view of figure 2 shows the waters 
(area C). This area was unaffected by earlier nighttime of the Great Lakes (near top of picture) and of the ocean 
precipitation. These cumulus clouds are a t  a much lower along the Middle Atlantic Coast to be much cooler 
elevation than most of the wave clouds immediately to (brighter) than the adjacent land. Also, the coastal waters 
the north, therefore they appear less bright (warmer) in are quite bright in the visible (fig. 1) because of sun 
the infrared picture. glint observed by the eastward-looking scans. 
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